Mitigating thermal runaway of lithium-ion battery by using thermally sensitive polymer blend as cathode binder

نویسندگان

  • Anh V. Le
  • Meng Wang
  • Daniel J. Noelle
  • Yang Shi
  • Yu Qiao
چکیده

Thermally sensitive binder (TSB) is developed as an internal safety mechanism of lithium-ion battery (LIB). The TSB is a polymer blend of poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Compared with regular PVDF binder, the softening and swelling of TSB are more pronounced when temperature is above 110 8C. With the TSB, the cycling performance of LIB cell is not affected; upon nail penetration, the heat generation rate is significantly reduced. The crystallinity of TSB is an important factor. This technology may lead to the development of thermal-runaway-mitigating LIB cells. VC 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45737.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of macromolecular configuration of thermally sensitive binder in lithium-ion battery

In order to suppress heat generation of nail-penetrated lithium-ion battery (LIB) cell, thermally sensitive binders (TSB) based on poly(vinylidenefluoride) (PVDF) and poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) were investigated. The testing data showed that with appropriate treatment, TSB could efficiently reduce the peak temperature associated with internal shorting, and did no...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery

In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...

متن کامل

Internal-short-mitigating current collector for lithium-ion battery

Thermal runaway is mitigated by changing the geometry of current

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017